Lower Bound on the Chromatic Number by Spectra of Weighted Adjacency Matrices
نویسندگان
چکیده
A lower bound on the chromatic number of a graph is derived by majorization of spectra of weighted adjacency matrices. These matrices are given by Hadamard products of the adjacency matrix and arbitrary Hermitian matrices.
منابع مشابه
Spectral Bounds on the Chromatic Number
The purpose of this paper is to discuss spectral bounds on the chromatic number of a graph. The classic result by Hoffman, where λ1 and λn are respectively the maximum and minimum eigenvalues of the adjacency matrix of a graph G, is χ(G) ≥ 1− λ1 λn . It is possible to discuss the coloring of Hermitian matrices in general. Nikiforov developed a spectral bound on the chromatic number of such matr...
متن کاملLower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces
Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...
متن کاملUnified spectral bounds on the chromatic number
One of the best known results in spectral graph theory is the following lower bound on the chromatic number due to Alan Hoffman, where μ1 and μn are respectively the maximum and minimum eigenvalues of the adjacency matrix: χ ≥ 1+μ1/−μn. We recently generalised this bound to include all eigenvalues of the adjacency matrix. In this paper, we further generalize these results to include all eigenva...
متن کاملNew Spectral Bounds on the Chromatic Number Encompassing all Eigenvalues of the Adjacency Matrix
The purpose of this article is to improve existing lower bounds on the chromatic number χ. Let μ1, . . . , μn be the eigenvalues of the adjacency matrix sorted in non-increasing order. First, we prove the lower bound χ > 1 + maxm{ ∑m i=1 μi/ − ∑m i=1 μn−i+1} for m = 1, . . . , n − 1. This generalizes the Hoffman lower bound which only involves the maximum and minimum eigenvalues, i.e., the case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره cs.DM/0112023 شماره
صفحات -
تاریخ انتشار 2001